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A critical case is shown to occur on the boundary of the stability region of an invertible mechanical system: 

the characteristic equation has two zero roots corresponding to a single group of solutions, the other roots 

being purely imaginary. The system is then as a rule unstable. 

1. STATEMENT OF THE PROBLEM 

WE WILL be concerned with the stability of the equilibrium position of a mechanical system under 
the action of position forces and forces which are quadratic functions of the velocities 

d aT ST 

(1.1) 
2T = IS aij (9) qi’qj’ 

i,i 
where T is the kinetic energy and Q, , aii, fsij are holomorphic functions of q. Throughout this paper, 
unless otherwise stated, j, s = 1,2, . . . , II and summation over the indices i, j, k, 1 is performed from 
1 to 12. On the assumption that an equilibrium position corresponds to zero values of the 
coordinates, qSo = 0 and Q,(O) = 0, let us solve system (1.1) for the highest-order derivatives 

4s” = + b&j + F8 (q) + jxk c8jk (q) qj’qk’ (1.2) 

Here F, and Csjk are holomorphic functions of ql, . . . , q,, and the expansions of the functions 
F,(q) begin with second-order terms in q; b, are constants. 

The characteristic equation 

A (x”) = det I( b,j - 6sjX2 11 = 0 (1.3) 

has only even powers of x. Consequently, if at least one of the roots of (1.3), x2 = X1*, . . . , A”*, is 
positive, then the equilibrium position is unstable to a first approximation [l]. In the parameter 
space of the system, therefore, the conditions XS2<0 define the stability region (to a first 
approximation). The present author studied this system on the assumption that all the roots X,’ are 
negative. On the boundary of the stability region at least one of the numbers A,* vanishes. 
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Let us assume that Ai2 = 0, Xi*<0 (j = 2, . . . , n) and bring the linear approximation of the system 
to canonical form. In new coordinates 

X = 2i 2 PljQjl y = 2 X Pljqj’, zs = 2 Psj (4j’ + hdljh 
i j j 

Z, = 2 psj (-qj’ + isqj) (s = 23 ’ * *7 n> 

(1.4) 

j 

(ZS is the complex conjugate of z,) the linear system becomes 

i = iy, y’ = 0, 2,’ = hlzs, Z,’ = - h,Z, (s = 2, . . ., n) 

if the purely imaginary constants psi are determined from the following systems of linear equations 

Pii - haa) pai + hips2 + . . . + bn,psn = 0 

MPsi + (ha - V’) ~sz + . . . + hian = 0 
(1.5) . . . . . . . . . . ..a....... 

binp,, + bwtp,, + . . . + @,n - haI psn = 0 

Since A,’ are the roots of the characteristic equation (1.3), the determinants of systems (1.5) 
vanish and so these systems have non-trivial solutions. Obviously, if no two of the numbers 5’ 
(j = 2, . . . , n), are equal, we have det llpsjI[ #O, which immediately implies that the transformation 
(1.4) is non-singular. The determinant of its matrix is equal to 

i2”‘-l fi hj {det 11 psj \I }a 
j=a 

Let us express qs , qs’ in terms of the new variables (1.4). We have 

2, + 2, = 2& 7 PajQj7 28 --z, = 2 7 PsjQj’ (s = 2,. . .) n) 

whence (dSi are purely imaginary constants) 

xi = irXk = 3Lk, Ei= x, %k = zI( + &, qi= y, T)k = zk - zk @ = 29 

We will now write the result of the transformation to the new variables 

1~. = iy, y’ = Y (x, y, z, Z) 

z’ = AZ + z (5, y, 2, Z), Z’ = --AZ + z (5, y, z, 5) 

Z = (22,. s -9 Z,), Z = (22, . ..) Z,), A = diag (ha, . . ., h,) 

Y = 2qP1j [Fj(q) f & cjkt(q)qk'!?l']&8) 

2s = gpaj [Fj (q) + i cjkl (q) qk'ql'l(l.6) 

(1.6) 

(1.7) 

where the bar denotes complex conjugation and the linear approximation is written down explicitly. 
By (1.7), the expansions of the functions, Y, Z, 2 in terms of powers of x, y, z, t have only purely 

imaginary coefficients. This is not surprising, because the original system (1 .l) is invertible with a 
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linear automorphism M: t--t, q+q, q*+-q’, which under the linear transformation (1.4) 
becomes 

t-t -t, 2+x, y-+--y, z-z, z-+z 

2. STABILITY 

It follows from our exposition up to now that on the boundary of the stability region one obtains 
the critical case of two zero roots with a single group of solutions and n - 1 pairs of purely imaginary 
roots. The stability problem in this case was solved in the case when n = 1 by Lyapunov [l] and later 
by Kamenkov [4]. Henceforth, for convenience, we replace IZ - 1 by IZ and consider a real system 

z’ = y, y’ = Y (x, y, u, v) 

US = %V, + u, (x9 Y, u, v), v,’ = -%U, + Y, (z, Y, u, v) 
(2.1) 

In so doing we must replace y in system (1.7) by iy, A, = io, , and U, and v, are the real and 
imaginary parts, respectively, of z, . Instead of the automorphism M we have N 

t-t -t, 2-+x, y-t-y, u-+u, V-F-V 

Applying this automorphism and the transformation formulae (1.4), we deduce from system (2.1) 
that 

Us (Z, 0, U, 0) E 0, aV*/ayl* = dVs/dYj I* = dy/dY I* = dY:aVj I* S 0 P-2) 

We now subject system (2.1) to a change of variables 

U, = u, * + f, (z):), VI = v, * + ye, (Z) (2.3) 

where the unknown functions fS, 0, are determined from the simultaneous systems of functional 
equations 

-O,f, (z) + v, (5, 0, f (x)9 0) = 0 (2.4) 

0,e, (z) + au,/ay I~+, u=f(rl, v=. = f,’ (z) (2.5) 

(the prime denotes differentiation with respect to x). Then the following conditions must also hold 
together with (2.2) 

v, (z, 0, 0, 0) = --8,Y (5, 0, 0, o), 8, to)= 0, au,/ay I* = 0 
A second change of variable 

(2.6) 

Y = Y* + 7 vj*‘Pj t2) (2.7) 

where the unknown functions cpi(x) are determined from the system of linear equations 

- @~(Ps (z) + ? dvj*/8u8* I* Cpi (z) = aY*ldu8* I* 

[Y * denotes the function Y after the substitution (2.3)], will reduce the equation for y to a form in 
which 
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aY/dUj I* z 0 

Conditions (2.2) and (2.6) remain valid. 
Finally, a last transformation 

E, = u,* + gr.d (4 ui*y YS = US* + ): esj Cx) vi* i 

(2.8) 

(2.9) 

with as yet undetermined functions fsj(x), O,(X), leads to the system 

Es’ = %% - o8 7e8jvj* + gf8j (wjvj* + uj*) + u8* + Tf8j’(X) uj*Y 

71,’ = - (J).iL + 08 lCfsj”j* + ge8j (- 
j 

mjUj* + vj*> + v8* + +e8j’ (x) vj*Y 

For each fixed s we determine the functions fsj, 0, (i#s) from the system 

- O,e,j + Ojfsj + kzs dUk*/avj* I* fsk + dUs*ldvj* I* = O 

(2.10) 

- (JJjesj + CJJ,f,j + R58 BVk*/aUj* I* 0,k + dV,*/duj* I* = O (‘7 i = ‘,**‘, n; i+‘) 

By conditions (2.2), after the substitutions (2.9) and (2.10), system (2.1), with conditions (2.2), 
(2.6) and (2.8), will also satisfy the condition 

dU,laVj )* E 0, dVa/dUj I* S 0 (S # i) (2.11) 

The reader will note that all the transformations preserve the automorphism N. 
As a result of transformations (2.3), (2.7) and (2.9), we obtain 

5’ = Y + 7 Vj’pj (x)9 

27X+1 

Y’ = Yo (z) -k , z=, [Yh (5) $ Yj, (5, Yy Uy v)I WjWk 

2ll+1 

7.L; = [OS + PS (x)1 U.J f j FE1 I”ijk (5) f usjk (S, !I~.“~ v)I Wj* wk 

ml+1 

u,’ zzz - 
[as + Vs (x)1 Us + J’s, (r) f 1 ?=, [vijk (x) f vsjk (xv Yv UI v)l wjwk 

(2.12) 

Here w denotes y, u, v and the functions Yjk, Uslk, Vsjk vanish when x = y = 0, II = v = 0. In 
addition 

Consider the function 

VS” (X) = -0, (x) Y, (z), 8, (0) = 0 (2.13) 

v =zW, W=(l$-az)Y2-- lq {[I t v, WI us2 + [I + CL, (41 vs2J 

where cx and l3 are certain constants. The derivative of this function along trajectories of system 
(2.12) is 
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Ls j;=lH~jk(z~ ~?u~v)~~wjwk~ ff,jk(o, o,o,o) = 0 
9 9 

2n+1 

cf, =W2[Yf $I*j~j (~11 + 2~ [yo(~> + j Tel Yi~(O)~j~k] - 

an+1 

-2PIXj zzI{[i 4. V,(O)] uI.ik(O)% f [t $ Ps (O)] vijk(O)*a} WjWk 

Suppose that in the neighbourhood in question 1.x ) s 6 and 

f4:: {I Cpj (x) I, I Pj (d I, I Vj (~11) = 8, max {I Yjk* (01, I u% (0) I, r, 
f %k (0) I> = A 

Since the functions cp(x), p(x), u(x) vanish at zero, it follows that for small 6 the number E is also 
small. Choose positive (Y, 6 so that in the domain W>O, y >O 

Y + 7 *jqf (x) > Y12, ~‘>~=I/3+YYo(~) (2.14) 

In this domain 

and conditions (2.14) will hold if 

aney < 1, a > 4 (2n + 1)2 (1 + 28) A + 4 

In fact, by (2.12) and (2.15) and the fact that the functions Yjk, Usjk, Vsjk vanish at x = Y = 0, 
u = v = 0 in the domain W>O, y >O, all the terms in the expression for W’, except tp, are o(y3, 
yY,-,(x)), while @ > 2%’ for sufficiently small x. Therefore, if V> 0 in the domain x > 0, y > 0, W> 0 
where q>O, it follows from Chetayev’s Instabihty Theorem [5] that the system is unstable. 

Let 

Ys (3) = gXrn + . . . (g = const) (2.16) 

Obviously, if m is even, we can always ensure by substituting x for --x and y for -y that the 
coefficient g is positive. If g>O then iIr> 0 in the domain V> 0. Thus, the system is unstable for even 
m, while if m is odd it is unstable if g > 0. But if Ye(n) = 0, the sign of %’ is determined by y3 > 0 and 
we again obtain instability. 

Theorem. The trivial solution of system (2.12), (2.13) and (2.16) is unstable in Lyapunov’s sense 
in each of the following cases: (a) m is even; (b) m is odd, g>O; (c) Yo(x) = 0. 

We see, then, that system (1.1) is generally unstable on the bounda~ of its stability region. It 
follows from the form of Chetayev’s function we have constructed that an increasing solution 
necessarily implies an increase in x. Therefore, by the transformation formulae (1.4), one of the 
coordinates 4 must also increase along such a solution. 
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The conclusions of the theorem are independent of the number n of purely imaginary roots. The 
decisive elements in this situation are the zero roots, which are indeed responsible for the instability. 

3. EXAMPLE. MODEL OF AN ELASTIC ROD WITH AN APPLIED TRACKING FORCE [h] 

Consider a mechanical system comprising two identical rods of mass m and length 1, attached by a hinge and 
spiral spring of stiffness c2 and placed on a smooth horizontal plane. The end of the first rod is attached by a 
hinge and a helical spring of stiffness c1 to a fixed point; the free end of the other rod is subjected to a tracking 
force F directed along the axis of the rod. In the underformed state of the spring both rods lie along a straight 
line-the x axis. 

We take as generalized coordinates the angles cpi and ‘pz by which the rods deviate from the x axis. Then in 
system (1.1) 

T = ‘i@12 14q,‘2 + 3qPl’Cpz’ COs (92 - Cpl) +:q)2”1, fs*j (9) E 0 

QI = ---cl% + c, (02 - %) - 8’1 sin (cpz - cp,ft 92 = ~2 (~1 - rpz) 

we have a mechanical system under the action of potential and non-conservative position forces. Noting 
equations (1.2), we write the characteristic equation (1.3) as 

36 cfcZ 
24+x%++ ‘i-&p-=0, d= & (2~ + 16~ - 5FE) 

which has two pairs of purely imaginary roots provided that 

29 + 169 - 5Fl - 2 1/7c,cz > 0 (CICZ # 0) 

This case was studied in [2]. But if clc2 = 0, we get 

?Q==o, li22=---02, OS>0 

and our transformation (1.4) is here 

b,, = -2b, - b,,, b,, = 3b, - b,, 

bla= 
3oca - 12Fl - 66cs + 16F1 

7mP ’ bsa= 7mP t b,=& 

The inverse transformation (1.6) is 

Z+E 
> 

2-- , w 

Expand the right-hand sides of the equations of perturbed motion in power series in terms of cp and q~. It 
turns out that there are not second-order terms on the right of (1.2), while the fourth-order terms are 
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Thus the expansion of the function Yu(x) in system (2.12) begins with fourth-order terms. It is obvious from 
the transformation formulae that 

baa + oa 
ha 

-1 3 1 
Hence we have 

h + bat = 
6Cl $- 36cs - GFL 12~1 - 96cp 

7mla * baa + aa - bla = 5mla 

Let c*=O. Then if 2cr-SFl>O (o*>O) we have bIl+b21>0, b22+w*-bn>O, bll<O, b,,>O and the 
equilibrium position is unstable. 

Let c1 = 0. Then since o’>O, we have l6~2-5Fl>O. Here bll+bZ,>O, b22+w2- b,2<0, b11612<0 and if 
Fl< 3/4c2 we have g > 0; the equilibrium is unstable. 
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